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Abstract
Here we consider vibrations of a single quantum vortex in a Bose–Einstein
condensate. Two different dispersion relations can be found in the literature;
we remove the contradiction on the basis of both numerical and analytical
considerations. The outcome is that the frequency of the vibrations, ω,
is proportional to k2 ln(1/k), where k is the wavenumber, assumed small
compared to the inverse core size. An extension of the phase integral
approximation is used in the numerical analyses.

1. Introduction

The recent spectacular achievement of Bose–Einstein condensation in trapped alkali metal
gases by Cornell, Ketterle, Wieman and others [1–3] has prompted scientists to develop and
tighten the theory. As vortices have been created in the medium, here we will take a new look
at the vibrations of the basic, n = 1, vortex structure in a Bose–Einstein condensate (BEC).

A BEC is often described by a single-particle wavefunction ψ(�x , t) of N bosons of mass
m that obeys the nonlinear Schrödinger equation. This equation is, according to Gross and
Pitaevski,

ih̄
∂ψ

∂ t
= − h̄2

2m
∇2ψ + W0ψ|ψ|2. (1.1)

An external trap potential is sometimes added when describing recent experiments. This
will not be needed here. Thus we study a vortex in an unbounded condensate. W0 characterizes
the potential between bosons. A short-wave repulsive potential has been modelled by a delta
function so as to obtain the cubic term. Equation (1.1) can be cast into dimensionless form via
the transformation (here E is the chemical potential)

ψ →
(

m E

W0

)1/2

exp(−im Et/h̄) x → h̄x√
2Em

t → h̄t

2m E
. (1.2)
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Figure 1. φ0(r) calculated numerically and also from models: solid curve (——) for numerical
results, broken curve (— — —) for φ01(r) = 1.166r/

√
4 + r2, dotted curve (· · · · · ·) for φ02(r) =

r/
√

1 + r2 and dot–dash curve (— · —) for Fetter’s r/
√

4 + r2; φ01(r) and φ02(r) cross at
r0 = 2.706.

Now (1.1) becomes

2i
∂ψ

∂ t
= −∇2ψ − ψ(1 − |ψ|2). (1.3)

An equation for the equilibrium state of a single, n = 1, vortex is derived from (1.3):

ψ = φ0 exp(iθ) (1.4)

d2φ0

dr2
+

1

r

dφ0

dr
= φ0(φ

2
0 − 1 + 1/r2). (1.5)

We will be concerned with vibrations around the solution to (1.5) such that φ0(0) = 0,
φ0(r) → 1 as r → ∞. This solution is illustrated by figure 1. We write

ψ = (φ0 + δφ) exp[i(θ + δθ)] (1.6)

and consider the perturbations

δφ = δφ(r, k) cos(kz) sin(θ − ωt) (1.7a)

δθ = δθ(r, k) sin(kz) cos(θ − ωt). (1.7b)

It will prove convenient to introduce δχ = φ0δθ . Next δφ and δχ are expanded in k,
assumed small:

δφ(r, k) = δφ0 + k δφ1 + k2 δφ2 + · · · (1.8a)

δχ(r, k) = δχ0 + k δχ1 + k2 δχ2 + · · · (1.8b)

and a dispersion relation is obtained by one of various methods. The history is confusing, as
different approximations seem to yield different solutions. Pitaevski and Fetter [4, 5] obtained

ω = 1
2 k2 ln(1/k) (1.9)
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which is a relation similar to that found by Kelvin for vibrations of a classical vortex in
hydrodynamics [6]. This should not be too surprising, as fluid equations can be derived
from (1.3) (albeit with a complicated pressure tensor and quantized circulation of the velocity).
However, Rowlands [7] found ω ∝ k2 and also mentioned flaws in the derivations of [4]
and [5] (these flaws, however, only generated errors in higher-order terms). A bit earlier,
equation (1.9) was derived by matching approximate solutions for δφ(r, k) and δθ(r, k) in two
different regions (r � 1/k and r ∼ 1/k) [8]. As far as we can see, the derivation of [8] is
free of the weaknesses of [4] and [5]. A further argument in favour of the credibility of (1.9) is
that it can be reobtained as a limit of a much more complicated dispersion relation for a vortex
ring, also obtained by matching two regions, but involving different mathematics. For further
references for all these problems, see [9, 10] for general background, and [11] for vortex rings.

Having read the above-mentioned papers, we posed the following question: how does an
expansion in k (or another small parameter) for the entire region as practised by us [12–14],
in which consistency conditions in the form of integrals over all space are imposed, perform?
Does it yield a dispersion relation contradicting (1.9)? To answer this question, we will take
another look at Rowlands’ formula. First, however, we appeal to numerics for a verdict on the
veracity of equation (1.9).

2. Numerical calculations

So as to find the dispersion relation ω(k) numerically, we introduce the notation

u = δφ + δχ v = δφ − δχ. (2.1)

Equations (1.3), (1.6) and (2.1) now yield a more symmetric pair for the perturbed quantities:

d2u

dr2
+

1

r

du

dr
−

(
4

r2
+ k2 − 1 + 2φ2

0

)
u − φ2

0v = 2ωu (2.2a)

d2v

dr2
+

1

r

dv

dr
− (k2 − 1 + 2φ2

0)v − φ2
0u = −2ωv (2.2b)

where φ0 solves (1.5). These equations have a unique pair of solutions that are finite at zero
and vanish at infinity. Divergent solutions at either end must be eliminated. This determines
ω(k) uniquely.

The first-derivative terms in equations (2.2) can be eliminated by the transformation

u = r−1/2ũ v = r−1/2ṽ (2.3)

leading to

d2ũ

dr2
−

[
f0(r) + k2 + 1 + 2

(
ω +

1

r2

)]
ũ − [1 − f1(r)]ṽ = 0 (2.4)

d2ṽ

dr2
−

[
f0(r) + k2 + 1 − 2

(
ω +

1

r2

)]
ṽ − [1 − f1(r)]ũ = 0 (2.5)

where

f0(r) = −
{

1

4r2
+ 2

[
f1(r) − 1

r2

]}
	 −

[
1

4r2
+

4

r4
+

38

r6
+

748

r8

]
(2.6)

f1(r) = 1 − φ2
0(r) 	 1

r2
+

2

r4
+

19

r6
+

374

r8
(2.7)

and the approximate expressions follow from the asymptotic expansion of φ0(r) for r → ∞;
see (A.5) in the appendix. This form of the equations is convenient for determining the
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asymptotic behaviour of unknown functions as r → ∞. In this limit all r -dependent terms in
the coefficients of equations (2.4) and (2.5) tend to zero. Neglecting them, one can easily find
two pairs of solutions [8]:

ũ = exp(±β jr) ṽ = s j ũ j = se, ge (2.8)

where βse (‘smaller exponent’),βge (‘greater exponent’) and the corresponding s j are constants;
for components of the eigenfunctions, the minus sign should be chosen. In view of (2.4)–(2.6),
the validity condition for (2.8) is

r 

√

2

k
. (2.9)

Our approach to calculating ω for given k will be to integrate numerically equations (2.2)
from r = ε � 1 to rmch (matching distance) and from r = ras 
 1 (asymptotic distance) to
rmch, and to choose the free parameters such that the functions u, v and their derivatives u′, v′
are continuous at rmch (shooting method).

The boundary condition (u, u′ and v, v′) at r = ε will be calculated from power expansions
around r = 0 (extensions of those given in [8]) of two solutions finite at r = 0, (u1, v1) and
(u2, v2); see (A.1) in the appendix:

u = C1u1 + C2u2 u′ = C1u′
1 + C2u′

2 (2.10)

v = C1v1 + C2v2 v′ = C1v
′
1 + C2v

′
2. (2.11)

The boundary condition at r = ras can be calculated from (2.8), but in that case ras must
satisfy (2.9), and becomes unacceptably large for small k. Thus, to make the calculation for
small k feasible, better asymptotics must be found. By analogy to the well known phase integral
approximation used for just one ordinary differential equation of the Schrödinger type [15, 16],
we will assume, instead of (2.8),

ũ = q(r)−1/2 exp

[
i
∫ r

r0

q(r ′) dr ′
]

ṽ = s(r)ũ (2.12)

where the functions q(r) and s(r) are ‘slowly varying’. Inserting (2.12) into (2.4) and (2.5)
and neglecting terms with derivatives of q(r) and s(r), we arrive at two equations for these
two functions1:

−q2 − [ f0(r) + k2 + 1 + 2(ω + r−2)] − [1 − f1(r)]s = 0

−q2 − [ f0(r) + k2 + 1 − 2(ω + r−2)] − [1 − f1(r)]s−1 = 0.
(2.13)

Solving these two equations we obtain

q2 = −β2
j (r) j = se, ge (2.14)

βse(r) =
{

f0(r) + k2 + 1 −
√

4(ω + r−2)2 + [1 − f1(r)]2

}1/2

(2.15)

βge(r) =
{

f0(r) + k2 + 1 +
√

4(ω + r−2)2 + [1 − f1(r)]2

}1/2

(2.16)

s j (r) = β2
j (r) − [ f0(r) + k2 + 1 + 2(ω + r−2)]

1 − f1(r)
. (2.17)

1 A general theory of the phase integral approximations for two or more differential equations similar to (2.4), (2.5)
has been developed by one of us (AAS) and will be published elsewhere; see also [17]. What is obtained here can be
shown to be the lowest-order approximation in the expansion parameter.
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Figure 2. ω/k2 as a function of k for long-wave perturbations: the solid curve (——) denotes
numerical results, the broken curve (— — —) is the theoretical curve, 1

2 ln(1/k), and the dot–dash
curve (— · —) is the Rowlands γ -coefficient (3.1) with δφ and δχ found numerically for given k.

As q(r) defined by (2.14) is pure imaginary and has a double sign, this sign (for
eigenfunctions) must be chosen such that iq(r) = −β j(r), j = se, ge. Finally, for r � ras we
can write

u = Cseuse(r) + Cgeuge(r) v = Csesse(r)use(r) + Cgesge(r)uge(r) (2.18)

where

u j (r) = [rβ j(r)]−1/2 exp

[
−

∫ r

r0

β j(r
′) dr ′

]
. (2.19)

To fix the multiplication constant in (2.18) we will take Cse = 1. The choice of lower limit
of integration in (2.19) is arbitrary, but if we choose it at ras, there will be no integral in the
boundary condition at ras; see equation (A.3) in the appendix.

Note that in the limit of r → ∞, in which f0(r), f1(r) and r−2 tend to zero,
equations (2.15)–(2.17) reproduce the results of Grant [8, p 700].

For given k, there are four free parameters in our problem: C1, C2, Cge and ω, to be
determined from four continuity conditions at rmch. In our calculations we increased ras until ω
no longer depended on ras.  Typically, this limiting value of ras was of the order of 1/k (rather
than 
√

2/k).
The calculation becomes progressively more difficult as k decreases. However, with

present day capabilities we have been able to take the numerical procedure down to k = 0.03.
In the appendix we describe some further details of our calculation. The numerical program
(in Fortran 77) is obtainable from the authors on request.

The results are presented as figure 2. Only by drawing ω/k2 as a function of k were we
able to answer the crucial question. Clearly ω ∝ k2 ln(1/k) as k tends to zero.
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3. Is Rowlands’ formula right or wrong?

A secondary feature of figure 2 is the curve corresponding to the Rowlands coefficient γ in his
ω = γ k2, calculated for given k:

γ = 〈δφ2
0〉 + 〈δχ2

0 〉
4〈δφ0 δχ0〉 〈a(r)〉 =

∫ ∞

0
a(r)r dr. (3.1)

This coefficient does not tend to a constant as k tends to zero, but instead follows the logarithmic
curve. Below, we present a qualitative explanation of why this is the case. Broadly speaking,
it is due to the fact that the k = 0 limit is singular as far as the large-r dependence of δφ and
δχ is concerned. In contradistinction to most of our k-expansion calculations, e.g. [12–14], a
slow k-dependence in δχ must be included in the integral. When this is done, and the integrals
estimated, we find

ω = 1
2 k2[ln(1/k) − constant]. (3.2)

The constant is positive and is at most of order one, and therefore insignificant when k is small.
The following is a refinement of Rowlands’ calculation.

Rowlands’ formula, in our notation as given by (3.1),

ω = k2 〈δφ2
0〉 + 〈δχ2

0 〉
4〈δφ0 δχ0〉 (3.3)

was obtained by expanding all quantities in k and then demanding that a global integral
consistency condition be satisfied. The r -domain is treated as a whole, in contradistinction
to Grant’s treatment, in which behaviour in two different regions (r � 1/k and r ∼ 1/r ) is
matched and ω(k) obtained by demanding continuity across the regions.

At first glance, equation (3.3) might be read as implying that ω ∝ k2. However, when the
expressions in the brackets are calculated for k = 0, one finds δφ0 = dφ0/dr , δχ0 = φ0/r .
The second term in the numerator diverges logarithmically (the other terms are finite). Our
usual procedure, as outlined in [12–14], breaks down. The k = 0 limit is singular and must be
treated with caution.

To obtain the correct dispersion relation from (3.3), we must allow a k-dependence in
〈δχ2

0 〉, though in view of (1.8b) it must be much weaker than any integer power of k.
For large r 
 1/k, δχ is proportional to exp(−kr)/

√
r ; see (2.2) in this limit. (Actually,

there is a higher-order correction to k in the exponent that we discard here. A second, well
behaved solution is proportional to exp(−√

2r)/
√

r and will eventually lose out.)
For k = 0, δχ ∼ 1/r for large r . Thus, when k is nonzero, no matter how small, we must

remodel the large-r behaviour of δχ . Simple k-expansion with δχ0 calculated at k = 0 will
not give the correct result.

Before deriving an estimate for (3.3), we now present a commonsense argument for the
logarithmic behaviour. As outlined above, δχ0 = φ0/r can only be used for r < 1/k, roughly
speaking. Thus the integral 〈δχ2

0 〉 can only be taken up to r ∼ 1/k, not r = ∞. As φ0 ∼ 1
for this value, the integral will introduce a ln(1/k) term.

We will now try to estimate the value of (3.3) by using models for both φ0 and δχ0.
For small r , δχ0 ∼ φ0/r ; for large r , say r 
 1/k, the exp(−kr)/

√
r dependence can

equally well be represented as φ0 exp(−kr)/
√

r , since φ0 → 1 as r → ∞. The simplest
possible model including both limits is

δχ0 = φ0
√

1 + αkr

r
exp(−kr) δχ0(k = 0) = φ0

r
. (3.4)

We do not know the value of α > 0. However, asymptotic behaviour only becomes important
when r 
 1/k. Thus α should be at most of order one. As we will see, its exact value will not
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influence our considerations. In view of what was said above, we do not need the improved
form of δφ0.

For an analytic calculation, we also need a model of φ0 that is an improvement on Fetter’s
φ0 = r/

√
4 + r2 approximation. Our model is constructed by first finding numerically the

value of a1 = [dφ0/dr ]r=0 for which φ0(r) described by equation (1.5) tends to unity as
r → ∞. The next term is found by expanding φ0 in r . The result is

φ01 = 2a1r√
4 + r2

a1 = 0.583 189 495 860 (3.5)

which is a numerical multiple of Fetter’s model.
For large r we find by expanding in powers of 1/r that

φ02 = r√
1 + r2

. (3.6)

These two model curves meet at r0 = 2.706. Figure 1 depicts the model obtained by combining
φ01 and φ02 as compared to φ0 found numerically.

We will now find an approximation to (3.3) using our models. The denominator in
equation (3.3) is

4〈δφ0 δχ0〉 = 4
∫ ∞

0
φ0(dφ0/dr) dr = 4[ 1

2φ2
0 ]∞0 = 2. (3.7)

(Fetter’s model yields the same result.)
The integral 〈δφ2

0〉 is approximately

〈δφ2
0〉 =

∫ r0

0

(
dφ01

dr

)2

r dr +
∫ ∞

r0

(
dφ02

dr

)2

r dr = 0.301. (3.8)

(Fetter’s model gives 0.25.)
So as to calculate the crucial term, 〈δχ2

0 〉, we assume that the contribution over the interval
[0, r0] is not influenced by the k-dependence, thus discarding terms ∼kn, n > 1, as of course
we may:

〈δχ2
0 〉 =

∫ r0

0

dr

r
φ2

01 −
∫ r0

0

dr

r
φ2

02 +
∫ ∞

0

dr

r
φ2

02(1 + αkr) exp(−2kr). (3.9)

The first two integrals add up to −0.352 (zero for Fetter’s model). The third term can be
written as

I − 1

2
αk

∂ I

∂k
I =

∫ ∞

0

r dr

1 + r2
exp(−2kr). (3.10)

The value of I (k) can be expressed in terms of ordinary and integral trigonometric
functions, si(2k) and ci(2k); see [18]. Finally, when all the bits are put together, we obtain

ω = 1
2 k2[ln(1/k) + α/2 − 1.31] + O(k3). (3.11)

(Fetter’s model yields a similar result, but with −1.64.) Although there is no reason to expect
α/2−1.31 to cancel to zero, the absolute value of this constant cannot be too large. It decreases
as the model is improved (e.g. from Fetter’s to ours). The leading term reproduces Grant’s result
from Rowlands’ formula, once the singular limit is understood. (Actually, Grant obtained his
result as 1

2 k2[ln(2/k)−0.692] = 1
2 k2[ln(1/k)+0.0011]; we obtained 1

2 k2[ln(1/k)−0.0032].)
Our calculation is not significantly model dependent. For example, taking as a model

δχ0 = 1

r

√
φ2

0 + αkr exp(−kr) (3.12)

also satisfying the conditions at the two limits, one reobtains (3.11), but with α instead of α/2.
Thus in any case we have vindicated giving the dispersion relation in the form (3.2).
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4. Summary

We have been able to resolve a contradiction in the literature concerning quantum vortex
vibrations in uniform BECs, superfluid 4He II and indeed any n = 1 vortices described by the
nonlinear Schrödinger equation with a repulsive potential. Numerical analysis confirms one
of the versions found in the literature. Rowlands’ formula, at first glance contradicting the
more established dispersion relation, is brought in line with its rival as derived by Pitaevski,
Fetter and Grant.
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Appendix. Numerical calculation; more details

The solutions of equations (2.2) that are finite at r = 0 can be expanded in powers of r [8],
and these expansions can be written as

u1 = r4(1 + a2r2 + a4r4) v1 = b0 + b2r2 + b4r4

u2 = r2(1 + d2r2 + d4r4) v2 = r6(g0 + g2r2 + g4r4)
(A.1)

where

a2 = 1
32 (4k2 − 4ω − 7)

a4 = 1
60 [a2

1b4 + 1
32 (41 + 96a2

1 − 35k2 + 4k4 + 38ω + 4k2ω − 8ω2)]

b0 = 12c c = a−2
1

b2 = 3c(k2 − 1 − 2ω)

b4 = 1
16 [24 + c(3 − 6k2 + 3k4 + 12ω − 12k2ω + 12ω2)]

d2 = 1
12 (k2 − 1 + 2ω)

d4 = 1
32 [2a2

1 + 1
12 (k2 − 1 + 2ω)2]

g0 = 1
36 a2

1

g2 = 1
64 [g0(k

2 − 1 − 2ω) + a2
1(d2 − 0.25)]

g4 = 1
230 400 a2

1(127 + 464a2
1 − 77k2 + 10k4 − 98ω + 20k2ω + 16ω2)

(A.2)

and a1 is given by (3.5).
The boundary condition at ras is given by equation (2.18), and its d/dr derivative, in which

u j = (rβ j)
−1/2 v j = s j u j

u′
j = u j

[
−1

2

(
1

r
+

β ′
j

β j

)
− β j

]

v′
j = s j u

′
j + s′

j u j j = se, ge

(A.3)

and all functions are taken at r = ras.
The differential equations (2.2), as well as (1.5) defining the φ0-profile, were first reduced

to a set of first-order equations, and then integrated by an efficient Runge–Kutta–Fehlberg
algorithm of order 8(7) [19], with automatic step size control. To speed up the evaluation of
φ0, which enters equations (2.2), this function was first tabulated on the mesh: r = ε0, 0.1,
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0.2, . . . , 14.8. Then for 0 � r � ε0 (=0.0006), φ0(r) was calculated from the truncated power
expansion:

φ0 = a1r [1 − 1
8r2 + 1

24 (a2
1 + 1

8 )r4] a1 = 0.583 189 495 860. (A.4)

For ε0 < r � rmch as (=14.861 664 9452) we integrated equation (1.5) from the nearest mesh
point (which in most cases required one step of integration only), and for r > rmch as the
asymptotic expansion for r → ∞ was used:

φ0 = 1 − 1

2r2
− 9

8r4
− 161

16r6
− 24 661

128r8
. (A.5)

Quadruple precision (33 decimal digits) was necessary for 0.03 � k < 0.08.
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